Mechanics of a rapid running insect: two-, four- and six-legged locomotion.
نویسندگان
چکیده
To examine the effects of variation in body form on the mechanics of terrestrial locomotion, we used a miniature force platform to measure the ground reaction forces of the smallest and, relative to its mass, one of the fastest invertebrates ever studied, the American cockroach Periplaneta americana (mass = 0.83 g). From 0.44-1.0 ms-1, P. americana used an alternating tripod stepping pattern. Fluctuations in gravitational potential energy and horizontal kinetic energy of the center of mass were nearly in phase, characteristic of a running or bouncing gait. Aerial phases were observed as vertical ground reaction force approached zero at speeds above 1 ms-1. At the highest speeds (1.0-1.5 ms-1 or 50 body lengths per second), P. americana switched to quadrupedal and bipedal running. Stride frequency approached the wing beat frequencies used during flight (27 Hz). High speeds were attained by increasing stride length, whereas stride frequency showed little increase with speed. The mechanical power used to accelerate the center of mass increased curvilinearly with speed. The mass-specific mechanical energy used to move the center of mass a given distance was similar to that measured for animals five orders of magnitude larger in mass, but was only one-hundredth of the metabolic cost.
منابع مشابه
Mechanics of six-legged runners.
Six-legged pedestrians, cockroaches, use a running gait during locomotion. The gait was defined by measuring ground reaction forces and mechanical energy fluctuations of the center of mass in Blaberus discoidalis (Serville) as they travelled over a miniature force platform. These six-legged animals produce horizontal and vertical ground-reaction patterns of force similar to those found in two-,...
متن کاملGait studies for a quadrupedal microrobot reveal contrasting running templates in two frequency regimes.
Performance metrics such as speed, cost of transport, and stability are the driving factors behind gait selection in legged locomotion. To help understand the effect of gait on the performance and dynamics of small-scale ambulation, we explore four quadrupedal gaits over a wide range of stride frequencies on a 1.43 g, biologically-inspired microrobot, the Harvard Ambulatory MicroRobot (HAMR). D...
متن کاملLeg design in hexapedal runners.
Many-legged animals, such as crabs and cockroaches, utilize whole-body mechanics similar to that observed for running bipeds and trotting quadrupedal mammals. Despite the diversity in morphology, two legs in a quadrupedal mammal, three legs in an insect and four legs in a crab can function in the same way as one leg of a biped during ground contact. To explain how diverse leg designs can result...
متن کاملOn the use of Hybrid Control for Legged Locomotion
In this paper, we develop a hybrid control approach for legged locomotion. We motivate the development of the control architecture using the results of a series of walking, running and obstacle climbing experiments conducted using a six legged robot called HEX. Our initial simulation results indicate the potential stability of the control approach, and our future analytical work should provide ...
متن کاملParsimonious predictive models for legged locomotion
Bora Banjanin Samuel A. Burden The phenomenon of legged locomotion arises from the intermittent interplay of musculoskeletal or mechatronic limbs with adjoining terrain. Since limb dynamics and terrain mechanics are generally high– dimensional and nonlinear, locomotion appears too complex to model from first principles. Fortunately, there is mounting evidence, both theoretical [4] and experimen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of experimental biology
دوره 156 شماره
صفحات -
تاریخ انتشار 1991